Performance of the ATLAS Tile Calorimeter in Run 2 and Electronics Upgrade for High Luminosity LHC

Joakim Olsson
Supervisor: David W. Miller
The University of Chicago

DPF2017 (a) Fermilab August 1, 2017

The ATLAS Hadronic Tile Calorimeter (TileCal)

- ▶ Hadronic non-compensating sampling calorimeter
 - Composed of steel absorbers and ~500,000 scintillating tiles
 - Read out via fibers coupled to ~10,000 photo-multiplier tubes (PMTs)
 - 2 PMTs per cell ~ 5000 cells
- TileCal (together with the LAr EM calorimeter) is crucial for measuring energy and direction of hadrons

ATLAS TileCal mechanical structure

TileCal cells

- One long-barrel and two extended barrels
 - Covering $|\eta| < 1.7$ and $0 < |\phi| < 2\pi$
- Three radial layers $(7.4\lambda_{int})$ for reconstruction of longitudinal showers
- Granularity: $|\eta| \times |\phi| = 0.1 \times 0.1 \ (0.2 \times 0.1 \ \text{in the D-layer})$
- Designed resolution: $\sigma/E = \frac{50\%}{\sqrt{E/\text{GeV}}} \oplus 3\%$

Performance of TileCal (a) 13 TeV

Excellent performance of the LHC and ATLAS

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

	ATLAS Recored Luminosity
2015	3.9 fb ⁻¹
2016	35.6 fb ⁻¹
2017 (so far)	10.1 fb ⁻¹
Total	49.6 fb ⁻¹

Percentage of masked cells and channels

Source: 2017 JINST 12 C06021

- Cells or channels (TileCal has 2 channels per cell for redundancy) with severe problems that can affect physics data quality are masked to be excluded from physics analysis
- ▶ TileCal show **best performance in 2016 with < 1 % of cells masked** at the end of the collision period
 - The 1% of masked cells in 2016 were mostly due to two problematic modules
 - The large number of masked cells in 2011 and 2012 were due to failures in the low voltage power supplies which powers the front-end electronics

Measurement of TileCal noise

Source: 2017 JINST 12 C06021

- Noise measurements are essential for the energy reconstruction of physics objects
- ▶ Two components: electronics and pile-up noise
 - Electronics noise: Gaussian fit to reconstructed cell energy in special runs without collisions
 - Pile-up effects contribute to the widening of the energy distribution
- ▶ Pile-up noise increases with $<\mu>$
- Electronics noise is roughly independent of $<\mu>$

TileCal response to single hadrons (E/p)

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsTileSingleParticleResponse

- What is E/p?
 - Momentum from isolated charged hadrons (tracks) from the inner detector
 - Extrapolate tracks to the calorimeter and sum energy in a cone to form E/p
 - E/p < 1 due to sampling and non-compensating nature of calorimeter
- ▶ Why E/p?
 - Validation of hadronic shower modeling and detector geometry
 - Important input to jet energy scale (JES) uncertainty

Measured average E/p response in TileCal

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsTileSingleParticleResponse

Low (~1) number of pp collisions per bunch crossing

- Selections to reject background
 - Charged hadrons: No other tracks allowed within a cone of $\Delta R < 0.4$ of selected track
 - Neutral hadrons: Energy in EM calo compatible with minimum ionizing particle
 - Muons: Require a 70% of the energy to be deposited in TileCal
- ▶ Good agreement between Data and MC

Measured average E/p response in TileCal

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsTileSingleParticleResponse

Multiple pp collisions per bunch crossing (pile-up)

25

Data 2015

Pythia Multijet

30

p [GeV]

Motivation for upgrade

HL-LHC

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028+
\leftarrow Run 2 \rightarrow		\leftarrow LS	S2 →	\leftarrow	Run 3	\rightarrow	← L5	$53 \rightarrow$	+	– Run 4	$1 + \rightarrow$			

▶ High-Luminosity LHC (HL-LHC) ~ mid 2026

- Extend the discovery potential and take full advantage of the LHC
- 10x the integrated luminosity (4000 fb⁻¹) of LHC runs 1-3, combined

Detector components do not need to be replaced

- Steel absorbers, scintillating tiles, and wavelength shifting fibers will survive
- May need to replace PMTs in high occupancy regions (PMT lifetime studies ongoing)

Readout electronics must be replaced

- Current TileCal readout is not compatible with the planned fully digital ATLAS HL-LHC readout and trigger architecture
- 2. Degradation (and aging) of electronics due to radiation (and time)
- 3. Improved *reliability* through *redundancy* and *simplicity*

The new readout architecture

Improved **reliability** through **redundancy** and **simplicity**

Current readout architecture

New readout architecture

Front-end electronics (on-detector)

Back-end electronics (off-detector)

- ▶ All digital data is transmitted off-detector at 40 MHz
 - Present system designed to output digital data at the maximum rate of 100 kHz
- ▶ The data is pipelined and processed in the off-detector Pre-Processor (PPr)

Digitization of the PMT signals

- Need to measure **time** and **total charge** for each PMT pulse
- Challenge: pulses are short and subject to photo-statistical fluctuations
- Digitization of PMT pulse is done by a dedicated front-end board

Image source: A. Paramonov

A PMT pulse from TileCal

Total charge =

Idt

Pulse time

Time in [ns]

Three different front-end technologies have been tested Upgraded "3-in-1" (discrete) QIE (ASIC) FATALIC (ASIC)

Pulse shaper

Charge integrator

Pulse shaper

Status of the upgrade electronics

Front-end (on-detector) electronics

- Three different front-end technologies have been evaluated; upgraded 3-in-1, QIE, and FATALIC
- A decision was recently made to proceed with the upgraded 3-in-1
- Evaluating new version of the high-speed communications board
- Testing new low voltage power supply (LVPS) redundant 10V local point of load regulators at the front-end
- Evaluating two options for HV; remote and local

Back-end (off-detector) electronics

- Tile Pre-Processor (TilePPr), Trigger and Data Acquisition interface (TDAQi), and FELIX (readout of the TilePPr) under design and prototyped
- TilePPr demonstrator already being used in test beams

TileCal test beam program in 2017

June 16-28 and September 6-20, 2017

Previously in June 2016, September 2016, and October 2015

- Main goal: validation of the upgrade electronics
 - Test the reliability of the whole system
 - Study the performance of different front-end technologies
 - Test two different systems for HV supply; local and remote
- Additional goal: calorimeter measurements of μ , e, π^{\pm} , K^{\pm}

Test beam setup at CERN

TileCal modules

Legacy electronics; 3-in-1 demonstrator; QIE and FATALIC demonstrator

Muon hodoscope

Measure the passthrough of muons

Test beam setup at CERN

Test beam control room

Results (3-in-1): 100 GeV mix of μ, e, and hadrons

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsTileTestBeamResults

Data collected with the 3-in-1 demo during the test beam in Oct-Nov 2016 test beam

Results: 100 GeV muons

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsTileTestBeamResults

Data collected with the 3-in-1 demo during the test beam in Oct-Nov 2016 test beam

Conclusions

- ▶ TileCal is performing well at 13 TeV
 - Results of the calorimeter response to single hadrons (E/p) at 13 TeV were presented
- ▶ All TileCal readout electronics to be replaced for the high luminosity LHC upgrade
 - Necessary for TileCal to be compatible with the new digital ATLAS readout and trigger architecture
- Status of the upgrade
 - A decision was recently made to proceed with the "upgraded 3-in-1" front-end electronics option
 - Tile backend electronics under design and prototyped
- Goals of the test beam program
 - Evaluate the performance of the upgrade electronics
 - Measurements of electrons, muons, and low energy hadrons

Huge thanks to the ATLAS TileCal team:)

DPF2017 @ Fermilab | ATLAS TileCal | Joakim Olsson (UChicago)

The ATLAS Experiment

The ATLAS Experiment

TileCal readout

3 layers in transverse direction

	Channels	Cells	Trigger Outputs
Long barrel	5760	2880	1152
Extended barrel	3564	1790	768
Gap and crack	480	480	128
MBTS	32	32	32
Total	9836	5182	2080

E/p — Event and track selections

- Track isolation requirement
 - No other tracks are allowed within a cone of $\Delta R < 0.4$ of the selected track
- Track-cluster/cell matching
 - Energy deposits associated with a cluster are matched to a track if ΔR <
 0.2 between the cluster/cell and the track (extrapolated to the most energetic sampling layer of a cluster)
- Reject background from neutral hadrons and muons and ensure that a significant fraction of the total energy is deposited in TileCal
 - Track p > 2 GeV and Iη I < 1.7 GeV
 - Increase fraction of particles depositing significant energy fraction in TileCal)
 - E_{EM} < 1 GeV
 - Energy deposited in EM calo compatible with minimum ionizing particle
 - $E_{Tile} / E_{Tot.} > 0.7$
 - Reject background contamination from muons

ATLAS Jet Energy Scale (JES) @ 13 TeV

arXiv:1703.09665

Tile upgrade milestones

On-detector electronics

PMT with 3-in-1 card

Tile Cal mini-drawer

On-detector electronics drawers

Demonstrator mini-drawer

- ▶ Super-drawer demonstrator is composed of 4 mini-drawers, each one containing
 - 12 front-end boards: 1 out of 3 different options
 - 1 main-board: for the corresponding FEB option
 - 1 daughter board: single design
 - 1 HV regulation board: 1 out of 2 different options
 - 1 adder base board + 3 adder cards: for hybrid demonstrator

Current drawers vs. new mini-drawers

Current organization of electronics in two drawers

Upgrade: organization of electronics in four mini-drawers

Front-end electronics options

Upgraded 3-in-1

- Shaped pulse (50 ns FWHM)
- 17 bit dynamic range in two gain ranges (12 bit ADC)
- Discrete components, lower electronics noise than present system
- Advantages: proven technology, compatible with legacy system and current analog TileCal trigger (demonstrator can be installed before HL-LHC)
- QIE (Charge Integrator and Encoder)
 - 25 ns gated integrator with amplitude threshold time measurement
 - ASIC, dynamic range achieved through 4 non-linear gain ranges
 - Advantages: proven radiation hard technology, has been used in many other experiments (including CMS and CDF)
- ► FATALIC (Front-end ATIAs tiLe Integrated Circuit)
 - Shaped pulse (45 ns FWHM)
 - ASIC, dynamic range achieved in three gain ranges
 - Advantages: fewer components, potential for higher radiation tolerance

A decision was recently made to proceed with the upgraded 3-in-1

Schematic of 3-in-1 front-end board

Schematic of the QIE front-end board

- ▶ The PMT current is integrated in a bank of capacitors
- ▶ The capacitors are time-multiplexed for deadtimeless operation at 40 MHz
- The current splitter is used to achieve the required dynamic range of > 17 bits
- ▶ The QIE12 ASIC is designed to be radiation tolerant and tailored for TileCal

Schematic of the FATALIC front-end board

- ▶ ASIC that includes all the reconstruction elements
- ▶ Optimal energy resolution with 3 gains (x64, x8, x1) + dynamic gain switch
- Currently a Main Board with 4 FPGAs, 3 channels/FPGA + Daughter Board

Test beam results: 165 GeV muons

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsTileTestBeamResults

Data collected with the FATALIC demo during the test beam in June 2017

TilePPr: schematic

Source: ATLAS-TILECAL-PROC-2015-025

TilePPr: production

Source: ATLAS-TILECAL-PROC-2015-025

- ▶ 6 working TilePPr prototypes
 - 4 TilePPrs at Valencia laboratories
 - 2 TilePPrs at the TestBeam area:
 One for 3-in-1 demonstrator and a shared one for QIE and FATALIC
- 2 newly assembled TilePPrs are undergoing testing
- Plan to assemble 2 more TilePPrs

TilePPr production

Low voltage power supplies

- Moved to single 10 V feeder supplies;
 local point of load regulators on
 Main Board and Daughter Board
- High level of redundancy
- Evaluated during test beams

High voltage distribution systems

- ▶ Two options under consideration; local and remote high voltage
- The local system (HV_opto) uses existing cables to derive the voltages specific for each PMT on detector
 - A small number of channels are subject to ~1 SEU per year
- The remote system (HV_remote) is contingent on the availability of space for cables in the flexible chains
 - Baseline: Investigating having cables with 48 pairs in the Barrel and 32 pairs in the Extended Barrel (256 cables in total)
 - Radiation is not an issue

Local (HV_opto) Bulk HV USA15 1 Cable/Drawer 256 Cables Total PMTs HV Control HV Control A8 PMTs/SD

Remote (HV_remote) ON DETECTOR Mini-Drawer 4 Parel HV Bus 1 HV Bus 2 HV Bus 3 HV Bus 4 HV Opto Mini-Drawers 3-4 LVs HV Micro HV OUTSIDE DETECTOR 16

Readout and trigger architecture

Source: ATLAS-TILECAL-PROC-2015-025

Readout and trigger architecture

Source: Tile Phase-II IDR

High-level description of the dual Level-0/Level-1 trigger system scheme (single level trigger system also under consideration)

Readout and trigger architecture

Source: Tile Phase-II IDR

Level-0 trigger rate	~1 MHz
Level-0 latency	~10 µs
Data rate to L0Calo and L0Muon	40 MHz
Latency data to L0Calo and L0Muon	~1.5 µs
Data rate to the FELIX	1 MHz-400 kHz
Latency data to FELIX	~60 µs

Table 1: Main trigger and readout parameters of the ATLAS Phase-II upgrade.

Up Link only	Present	Upgrade
Total Available Bandwidth	200 Gbps	80 Tbps
Number of fibers	256	8192
Fiber bandwidth	800 Mbps	9,6 Gbps
Number of modules	32	32
Number of crates	4 (VME)	4 (ATCA)
Input bandwidth per board	6,4 Gbps	2,5 Tbps
Out bandwidth to DAQ per module	3,2 Gbps	40 Gbps
Out bandwidth to trigger per module	Analog front-end	~500 Gbps

Table 2: The TileCal readout system in the present and Phase-II upgrade architectures. Bandwidth refer to available bandwidth in the link.